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I INTRODUCTION

Theoretical work in wave propagation in randomly irregular media

has progressed considerably over the last several years [Flatt6 et al.,

1980; Rino et al., 1980b; Rino, 1980]. A collection of comparatively

simple formulas has emerged that characterize the most important

channel effects--temporal coherence loss, frequency coherence loss, and

angle scattering,--under conditions of strong scattering, such as would

occur in the ionosphere following a high-altitude nuclear detonation.

To the extent that these results have been tested, they have proven

accurate.

Insofar as basic, theoretical work on propagation is concerned

little more is required for predicting system performance in highly

disturbed, but known propagation environments. The basic problem of

accurately characterizing such propagation environments remains,

however, and new issues continue to emerge. For example, in the

power-law environments that seem characteristic of all turbulent

channels, the severity of the propagation effects are sensitive to

changes in the spectral index. To study such subtle effects, a

refined propagation theory is important because "channel sounding"

remains the most economical means of obtaining data on irregularity

structures. Under this contract, we have investigated a new technique

for beacon diagnostics.

For some time there has been concern about the accuracy with

which the scintillation structure "mirrors" the underlying irregularity

structure that causes the scintillation. This concern was intensified

when the Wideband satellite data showed a spectral index that was

not only shallower than was expected, but also variable. This dilemma

has only recently been resolved by carefully analyzing data from the

Atmospheric Explorer Satellite E (AE-E)[Livingston et al., 1980].
These data showed that the in-situ spectral index is indeed more
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II

shallowly sloped than expected and that it varies systematically, as

the Wideband satellite data implied.

In addition to the shape of the spectral density function (SDF),

we would like to measure the absolute electron-density fluctuation

level or turbulent strength (as distinct from N/N) for each spectral

component. To do so from conventional phase-scintillation data involves

a two-fold complication:

(1) The level of phase-scintillation depends on the propagation

geometry relative to the principal irregularity axis of

elongation and the corresponding "stretch" factors or

axial ration.

(2) The level of phase-scintillation depends on the integral

along the propagation path.

Because the irregularity anisotrophy, the path length of, and, in

particular, the structure variation along the propagation path are a

priori unknown, a completely unambiguous determination of turbulent

strength from such scintillation data is not feasible.

In the DNA PLUMEX experiment conducted at Kwajalein during Julv-

August 1979, however, a downward-looking radio beacon was flown

together with a sophisticated complement of in-situ probes. Unlike

the satellite-beacon measurements, in the rocket configuration the

velocity component along the line of sight is much larger than the

transverse component. A comparative analysis of the in-situ probe

and beacon data from PLUMEX has shown that there is a simple derivative

relationship between the beacon phase and the in-situ density that

does not involve any unknown parameters [Rino et al., 1980; Petriceks,

1980]. Thus, the beacon data can be used to determine the turbulent

strength.

Because of the comparative simplicity of such rocket-beacon

measurements, we have developed a theory (Section 11 of this report)

4



for interpreting rocket beacon-phase spectra where vli vi . The

results show that as long as r = vi/vll is less than 40 percent,

2 2 2
( (K) = r Ki ()/2
z e

where z (K) is the beacon-phase SDF and ql(r) is the one-dimensional

SDF as measured by the in-situ probe. The relationship obviously

breaks down at small wave numbers, but the analysis shows that,

depending on 3, the relationship holds to within a few spectral

resolution cells of the smallest resolvable Fourier component.

Because the classical electron radius, re, and the wavelength, ,

are known, the beacon-phase SDF can be simply and unambiguously

related to the in-situ SDF. The technique is, therefore, potentially

useful for future diagnostic rocket probes.

In Section III of this report, we have investigated the simplest

form of the mutual coherence function, which is useful for modeling

the Doppler spectrum of a scintillating signal. An approximate

formula is developed that relates the perturbation strength to the

spectral width without having to evaluate gamma functions. Two

limiting analytic forms for the Doppler spectrum are derived: one

characterizes shallowly-sloped phase spectra and has a power-law form;

the second has a Gaussian form and is appropriate for more steeply-

sloped spectral-density functions. Numerical computations are presented

that show the variation of the spectral shape with changing the

spectral index between the two extremes where analytic results can

be obtained.

These results are useful for both predictive modeling and data

analysis. The Doppler spectral model is being verified concurrently

using Wideband satellite data.
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II RADIO-BEACON MEASUREMENTS OF LOCAL IRREGULARITY STRUCTURES

A. Background

Over the last decade, extensive phase scintillation data have

been obtained from low orbiting and geosynchronous satellites [Crane,

1977; Davis et al., 1975; Rino et al., 1980b]. In such measurements

both the signal source and receiver are generally well removed from

the disturbed medium. Ignoring diffraction effects and temporal

changes in the medium, the instantaneous phase perturbation is given

by the formula

P

p(t) = kR(t) - re f N e vt , T dy (1)

0

where k = 27/A, R(t) is the range to the satellite, k is the length
p t

of the propagation path within the disturbed medium, and N (p, z) is
e

the local electron density.

The path length changes with time, but k. is assumed nearly
P

constant over periods long compared to the time scale for phase

changes of interest. If v = Vya the phase SDF takes the form

h(f) r2X2 Zfl(K, -, -- (2)e p x'v ' 2-n

where P(K, K z) is the three-dimensional SDF of N (p, z). Thee

corresponding one-dimensional SDF measured by an in-situ probe is

2fD 2("27 (3)
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It is readily shown [Rino, 1979] that if z) K(2+) then
f2 v --(2v-1)

(f) - f-2 and PI(f) f-. Thus, if v = 1.5, then the phase
-3

SDF has the power-law form f , whereas the one-dimensional in-situ

has the power-law form f- 2. The difference of unity between the in-situ

and phase spectral indices has been verified by comparing spectral

measurements derived from Wideband satellite phase data and AE-E

in-situ data [Livingston et al., 1980].

For a downward-looking, rocket-borne radio beacon, the signal

phase takes the form

z 0+V t

4(t) = k(z0 + vt) - reA N e(vt, )dq (4)

0

where v and vi are the relative velocity components along andz

transverse to the line of sight to the receiver. The fixed path

length z0 effectively establishes the initial condition for the

indefinite integral that v t maps out.

In the early development of guided missiles, radio-beacon

measurements were used for trajectory evaluation. As with satellite

radio navigation, the ionospheric contribution was a source of error.

As the techniques were refined, however, the radio-beacon data came to

be used to determine ionospheric density profiles [Berning, 1951].

If v is small, we have only to remove the geometric Doppler termI

kv t in Eq. (4) and differentiate the residual to obtain N (z).
z e

Note that the measurement gives absolute electron density because

only phase changes are involved.

More recently, the technique has been exploited to measure

small-scale irregularity structure. In July 1979, a rocket-borne

radio beacon was launched from Roi Namur Island in the Kwajalein

Atoll into a highly disturbed equatorial ionosphere. The results

7



of the beacon and probe structure comparisons are described in

Rino et al. [1980c]. The data interpretation was based on the

assumption that vI in Eq. (4) could be disregarded. This assumption

was justified ex post facto by the agreement between the in-situ and

beacon data.

In this section we develop the theory, in detail, to assess

the general applicability of the radio-beacon measurement technique

for determining local in-situ irregularity structures. We begin

by computing the general relation between the beacon-phase SDF and

B. Spectral Relations for Rocket-Beacon Phase Measurements

To simplify notation, we let z = v t and consider the indefinite
z

integral

z 0+z

NT(Z) = Nf N((-z, T))dr , (5)

0

where

; v /Vi z .(6)

If we assume that N ( , z) can be modeled bv a statistically homogeneous
C

random process throughout the measurement region, we can write

NC (, z) = fff ( -i(X., + . zAd ( ) (7)
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where

~< <d,jN zd,'N*(, C ) , )0(' )( z -")(8)
N Z N z (2.)3 z z

is a purely formal definition of the orthogonal increments property of

the Fourier spectrum d NO-,  z).

By substituting Eq. (7) into Eq. (5) and changing the order of

integration, we can eliminate the indefinite integral in Eq. (5).

The result is

Nl(Z) -- exp -i xpf~z -i- d (z(+ z 0 z )  (9)
NT( =fff cxl [xPi z N z-l

Because we can only compute the finite Fourier transform, we shall only

consider the intep ral

L

N T ( )  = N T (Z)CxP i , zZLiz, (10)

0

In fact, NT (z) must be modified to avoid contamination of the spectral

estimate because of "end point mismatch." Such .ubtleties need not be

formally carried through the analysis, however.

If Eq. (9) is now substituted into Eq. (10) and the integration

over z performed, the result is

NTO) , = xp(-izZO  .) (11)

z



where

A exp -i(q1 + q2- q 3)LD L(q1. q 2, q 3  z 0) [' (q + q- q)- exp iq 2zO4

ex+ -i(q1 I q3 )L~ (12)

(q1  q q3) J
An estimate of the ODF of N T(z) is obtained by computing

12(K )/L and averaging to smooth the statistical fluctuations.

The result is close to the expectation value,

z(K) z <IN T(K z)I >/L .(13)

To evaluate Eq. (13), we substitute N T(K z) from Eq. (11) and

use the orthogonal increments property Eq. (8) to obtain

I '(K; KZ) dK' dK -

I(K )D;m12~ 2 . (14)

We note that there is no singularity at K' = 0 because

Let us first consider the special case for which t,= 0. Then,

10



I
(P (K 2 ) dr

(P (K) I ,O K;, Z; ZO 2Lz Z (16)

where

(K dK (17)
¢I(Kz) =1 I(K, K z) d(2(17

is the one-dimensional spatial SDF derived from a probe scanning

along the z axis which should not be confused with the temporal SDF

defined by Eq. (3).

The general behavior of Eq. (16) is readily established. We

first isolate the K' regime where Eq. (15) applies. It is sufficient
z

to take K' < 27/L, whereby
z

K, KZ; Zo)I 2 
2(K;) dK

KK

z ,lKl <2ff/t

sin 2[K L/2] dK'
2L l(Kz) 2ir (18)z Jz

z L

This contribution to Eq. (16) becomes vanishingly small as K z increases;

however, for large Kz

11



12 sin 2 [(K-~)L

L K , z z 0 ) - - (19)

Z 7

Now, as long as the variation of ¢,l (K') is small over K intervals,
1 z z

comparable to 211/L, we can show that

-II

sin z- )z 1 ( z ) dz I ( z )

2 
(20)

' 2 ___ __ 2r 2__ _(z '2 z 2z K 2
ZZZK

K >2 i/L

[Rosenblatt, pp. 169-180, 1962], which is sometimes referred to as the

"sifting property" of sine2 .

As long as K z. 2i/L, the = 0 behavior of Eq. (14) is
z

summarized by

z ( r z  z z / 2z  (21)

The relationship Eq. (21) is useful because it involves no unknown

paramters, e.g., the length of the propagation path or the axial

ratios, which characterize the anisotropy of the medium.

At the opposite extreme where (V is very large, we can disregard

q2 in Eq. (12) where is appears next to q1 " The result is

12
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^~ 9 I& s inK;); - z)L/2]

0 )2L

sin2[ /2z dC"

2 z 21, )2 (22)__ _ _ _ _ _ _ z d :

(2

In the usual approximation the integral over r' is replaced by zoi( ' 0).

Finally, by letting i = Va and applying the sifting property of sinc
2

y

to the K integration, we have
Y

z 0,z) z 0 f :+x' z' 0) 2 (23)

which is essentially equivalent to Eq. (2). Note that z in Eq. (23)

is the distance from the point where the disturbance starts and is,

therefore, unknown.

For 0 • 1, which is the case of primary interest, we first

isolate the region near = 0 and use Eq. (15). Jn place of Eq. (18)
z

we now have

13



(2 ) 2K (.Z_ K)l2LdK 2
1 2 271

(271) ]K2K- K)2L

Z

I -~ dK'
(D(K, KZ) d 2 (24)

(2T 2 271

IK zj<27/L

S ^ 2
If we let B = Ba and using the sifting property of sinc , the right-

y
hand side of Eq. (24) can be replaced by

dK' dK'

4(KX, Kz/B, KZ) 2 2 (25)
z 2T1 27T 25

- IKI;<2T11L

For a power-law SDF this contribution again decreases rapidly with

increasing K .

The behavior of Eq. (14) for the region outside IKz1<2n/L can be

determined with the aid of Figure 1 where the K' - K' plane has been
y z

partitioned into two regions separated by the line K = K/B. To theY
right of this line,

2 + K-K)2]
, KZ; 0)2 sin ( a K z Kz L/2(26)

L L( ('t + K' - K )2L

Z z

14



4 - . -.

The lines where Eq. (26) achieves its maximum value are also shown

in Figure 1. This behavior is illustrated in the perspective plots

of1 ID (K y, K : ; 0 ) 12 shown in Figures 2 and 3. For convenience,

L was set equal to 2. Figure 2 corresponds to a large K value so thatz

the shaded region V ' K/B is not entered over the K range plotted.
y z y

= Zmi /0

, K = /S J

V z

Ky

V

max

.min Z-

2ff K zm
L ma x  z

FIGURE 1 REGION OF K; - K' PLANE WHERE 1/LIDLI CAN BE APPROXIMATED BY sinc2
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r -1

K 0 10

t ~ FIGURE 2 PERSPECTIVE PLOT SHOWING 1/LIDL 1 AS A FUNCTION OF K' AND K' FOR

SMALL 13 AND LARGEK
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FIGURE 3 PERSPECTIVE PLOT SHOWING THE EFFECT OF DECREASING Kz
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In Figure 3, the region where Eq. (26) breaks down is evident. The

effect of increasing B is shown in Figure 4.

We have already established that the contribution to Eq. (14)

for small K' is negligible when K << 27/L. Thus, there is a minimum
z z

value of K as shown in Figure 1. Beyond an arc drawn from the
z

intersection of K' = 2n/L and K' 
= 

(K - K;)/, the contribution to

z y z .

Eq. (14) of D(K; KZ)IK; must be negligible. We can then apply the

sifting property of Eq. (26) to obtain

^ ¢'K Kz - K" B) d* 27

((';Kz d 2
(Kz 2 - 2 (K )K 

z  (27)
z() fJ (K -K.') (2)

The second approximation applied because K < K" in the regionZ

where Eq. (26) is valid. For a typical power-law SDF, the validity

conditions for Eq. (27) are easily achieved B 4.

18
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III DOPPLER SPECTRUM

A. Background

For some predictive scintillation codes, it is useful to model

the Doppler spectrum of the complex signal, v(t). The Doppler spectrum

is formally the Fourier transform of the mutual coherence function

*

R (T) = <v(t)v (t + T)> (28)' V

Under reasonable assumptions, moreover, R (T) admits the simple
V

representation

Rv(r= exp - D, (veT) (29)

where

D's (y) = 2(y 2 [1 - Q. y)] (30)

is the phase structure function, G, is the rms phase, and (Y)

is the normalized phase autocorrelation function [, 6:(0) = 1].

Equation (29) is strictly valid only in the plane normal to the

proDagation direction, that is, when parallel propagation effects

are negligible. The correction factor that must be applied to

accommodate parallel propagation effects are described in Rino,

Section V, [1930]; thus, we shall only consider Eq. (29) here.

If the three-dimensional spatial SDF of the irregularities has

the general power-law form

abC
ah S +112 (31)

z [q 2 + q 2]

20



I
then (y), the two-dimensional Fourier transform of Eq. (31), can

be evaluated as

2 jqWIj-1/2
(y) 1/2) 1,2 (qoy) (32)

where y is a quadratic form in the spatial separation coordinates,

C and vI as described in Rino I 1979a, hi. However, in spite of

the comparatively simple form of Eq. (32), it is too cumbersome for

direct use in Eq. (29), and we seck simpler approximate forms.

The simplest approximat ion that ret ains a dependence on the

spectral index parameter, , is

D..(y) G .. ' 1 (33)

2.
where C, is the phase structure constant

2 2 2 V 2,(1.5 - v)C4  e ' p 2 2- (34)
e (0.5 + :)(2,. - I)22 -I

which is valid for u 1.5. Equation (33) is obtained as an

asymptotic approximation Eq. (30) in the limit as q0 becomes very

small [Rino, 1979b]. Note that Eq. (33) does not retain an explicit

dependence on q0

For more steeply sloped spectra ( 1.5), a quadratic

approximation of the form

2
D (v) = DlY (35)

21



is admissible. In Eq. (35), D is the first nonzero coefficient in

a Taylor series expansion of D (y). The expansion coefficients

generally do not exist independently from an inner-scale cut-off,

[Rino et al., 19801, although D1 is independent of q0 and qi for

v > 1.5.

For the entire range of v values, R v(T) admits the approximate

form

R (T) expi 1/2 C 8
2 

1yjmin(2v-l,2)4 (36)

where

2(1.5 - )

(.5l)v 2V 0.5 < v < 1.5

2TC6 P 2 1
2 log(qi/q0  v = 1.5 (37)

P

I(v - 1.5)
4r(v - 0.5) 1.5

A plot of 21C62/C as a function of v is illustrated in Figure 5.

The singular behavior at j = 1.5 is indicative of a breakdown in both

the asymptotic and quadratic approximations. The dashed line is

probably closer to the correct functional dependence of an asymptotic

approximation of the form of Eq. (32).

22
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For predictive modeling, therefore, it is conven i Cnt to take

2 2
2 C - 4.5. + 5.5 1.0 < < 2.0 H,)

which follows the dashed curve in Figure v ecrv closkiv. Approximations

such as Eq. (38), are particularly convenient because of the. t.vidence,

that the spectral index itself varies systematically with changing

turbulent strength [Livingston et al., 1)80; Rino et al., 1980c].

In any case, for our purposes here, we are only interested in the

behavior of Eq. (36) as a function of . Because of tile simple power-

law form of the argument of the exponential function, C is

effectively only a scale factor.

B. Special Cases and Numerical Computations

To compute the Doppler spectrum, we must evaluate the integral

R(f) J (R ) Cxp 1- [-2ifL d'r (39)

Substituting y v ec into Eq. (36) gives
eoff

Rv(m)in(2 -1,2) (40)

where

S - m i (2 - 1,42 ) (4 1 )

24



I = 1, Eq. (31() admits the exact solution

1 2
:(f) = 2 (42)

0 1 + (2"rt 0 f) 2

Simi larlv, i f 1.5, then :(f) takes the Gaussian form

(f) 0(43exp)
L 4

Thus, the general trend is from shallow power-law to Gaussian as

inc reases.

This is verified in the numerical evaluations of Eq. (39) using

the fast Fourier transform algorithm. In Figure 6, 0o(f) is plotted

for = 0.8, = 0.9, and = 1.0. For such shallowly sloped phase

spectra, the overall shape of !(f) changes little. As the slope

increases, however, shape changes rapidly--as shown in Figure 7 where

0 :(f) is plotted for 1.3, = 1.4, and 1.5.

For predictive modeling, therefore, we can use Eq. (42), where

the spectral index is comparatively small, and Eq. (43) for the

opposite extreme. It should bc kept in mind, however, that i0 itself

depends on the spectral index parameter, *i, as well as on the

perturbation strength.

25
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IV CONCLUSIONS

In this report we developed a theory to interpret beacon-phase

data when the line-of-sight velocity component is much larger than the

transverse component. In that situation, there is a simple relationship

between the phase spectral-density function and the one-dimensional

in-situ spectral-density function that a rocket-borne density probe

would be measured. Thus, ooth the spectral shape and the turbulent

strength can be determined.

Because the rocket beacon signal itself is the data source, no

telemetry is required. Thus, such beacon measurements provide a

comparatively inexpensive means for obtaining quantative ionospheric

structure measurements.

Also, a simple mathematical model was developed for predicting

the Doppler spectrum of a satellite signal received in the usual

situation in which the transverse Doppler component dominates. Thi;

model is useful both for data interpretation and ;ystem analysis.

Most other theoretical results of interest have been verified.

The mutual coherence function model itself, which is the starting

point for the Doppler spectrum computations, 'ias not yet been tested

against real data, but this effort is being pursued under a separate

contract.
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